Parameter learning for the belief rule base system in the residual life probability prediction of metalized film capacitor
نویسندگان
چکیده
The Inertial Confinement Fusion (ICF) laser device consists of thousands of Metalized Film Capacitors (MFC). The Belief Rule Base (BRB) system has shown privileges in reflecting complex system dynamics. However, the BRB system requires the referenced values of each attribute to be limited. The traditional BRB learning and training approaches are no longer applicable since the referenced values of the attributes in the BRB system are pre-determined. A parameter learning approach is proposed with three strategies and each strategy is designed for one specific scenario. Strategy I (for Scenario I) is designed when only the training dataset is selectable. Strategy II (for Scenario II) is designed when new referenced values are predictable yet there is only one scale in the conclusion part. Strategy III (for Scenario III) is designed when new referenced values are predictable and there are multiple scales in the conclusion part. The Differential Evolution (DE) algorithm is used as the optimization engine to identify the key referenced values. A case is studied to validate the efficiency of the proposed parameter learning approach with multiple referenced values. The comparative results show that the parameter learning approach performs best in Scenario III. 2014 Elsevier B.V. All rights reserved.
منابع مشابه
Optimal Placement of Capacitor Banks Using a New Modified Version of Teaching-Learning- Based Optimization Algorithm
Meta-heuristics optimization methods are important techniques for optimal design of the engineering systems. Numerous methods, inspired by different nature phenomena, have been introduced in the literature. A new modified version of Teaching-Learning-Based Optimization (TLBO) Algorithm is introduced in this paper. TLBO, as a parameter free algorithm, is based on the learning procedure of studen...
متن کاملOnline Fault Detection and Isolation Method Based on Belief Rule Base for Industrial Gas Turbines
Real time and accurate fault detection has attracted an increasing attention with a growing demand for higher operational efficiency and safety of industrial gas turbines as complex engineering systems. Current methods based on condition monitoring data have drawbacks in using both expert knowledge and quantitative information for detecting faults. On account of this reason, this paper proposes...
متن کاملImprovement of Rule Generation Methods for Fuzzy Controller
This paper proposes fuzzy modeling using obtained data. Fuzzy system is known as knowledge-based or rule-bases system. The most important part of fuzzy system is rule-base. One of problems of generation of fuzzy rule with training data is inconsistence data. Existence of inconsistence and uncertain states in training data causes high error in modeling. Here, Probability fuzzy system presents to...
متن کاملOn the Influence of Riveting Process Parameters on Fatigue Life of Riveted Lap Joint
In this paper, influence of riveting process parameters, namely, riveting force, sheet thickness, friction coefficient and clearance fit are investigated on residual stress field and fatigue life of single riveted lap joint of AA2024 type. According to the effect of riveting induced residual stresses on fatigue life of riveted lap joint, these parameters are optimized to maximize the residual s...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Knowl.-Based Syst.
دوره 73 شماره
صفحات -
تاریخ انتشار 2015